2 . Kernel Principal Component Analysis

نویسندگان

  • Amit Shinde
  • George Runger
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

An Experimental assessment of the performance of Linear and Kernel-based Methods for Face Recognition

This paper presents the results of a comparative study of linear and kernel-based methods for face recognition. These experimental results include: (1) a comparative study of linear methods for feature extraction, such as Principal Component Analysis (PCA), Fisher’s Linear Discriminant Analysis (FDA), and kernel based methods for feature extraction, such as Kernel based Principal Component Anal...

متن کامل

Multivariate Statistical Kernel PCA for Nonlinear Process Fault Diagnosis in Military Barracks

Because of the nonlinear characteristics of monitoring system in military barracks, the traditional KPCA method either have low sensitivity or unable to detect the fault quickly and accurately. In order to make use of higher-order statistics to get more useful information and meet the requirements of real-time fault diagnosis and sensitivity, a new method of fault detection and diagnosis is pro...

متن کامل

Probabilistic Analysis of Kernel Principal Components

This paper presents a probabilistic analysis of kernel principal components by unifying the theory of probabilistic principal component analysis and kernel principal component analysis. It is shown that, while the kernel component enhances the nonlinear modeling power, the probabilistic structure offers (i) a mixture model for nonlinear data structure containing nonlinear sub-structures, and (i...

متن کامل

Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method and preliminary applications in image hyperresolution are presented. In addition, we discuss the extensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008